SHIVAJI UNIVERSITY, KOLHAPUR - 416 004, MAHARASHTRA

www.unishivaji.ac.in, bos@unishivaji.ac.in

शिवाजी विद्यापीठ, कोल्हापूर - ४१६ ००४,महाराष्ट्र

दूरध्वनी - ईपीएबीएक्स - २६०९०००, अभ्यासमंडळे विभाग दुरध्वनी ०२३१–२६०९०९३/९४

SU/BOS/Science/497

To,

The Principal,	The Head/Co-ordinator/Director
All Concerned Affiliated Colleges/Institutions	All Concerned Department (Science)
9	
Shivaji University, Kolhapur	Shivaji University, Kolhapur.

Subject: Regarding syllabi of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 degree programme under the Faculty of Science and Technology.

Sir/Madam,

With reference to the subject mentioned above, I am directed to inform you that the university authorities have accepted and granted approval to the revised syllabi, nature of question paper and equivalence of M.Sc. Part-II (Sem. III & IV) as per NEP-2020 degree programme under the Faculty of Science and Technology.

	M.Sc.Part-II (Sem. III & IV) as per NEP-2020				
1.	Microbiology (HM)	8.	Food Science & Nutrition		
2.	Pharmaceutical Microbiology (HM)	9.	Food Science & Technology		
3.	Microbiology	10.	Biochemistry		
4.	Computer Science	11.	Biotechnology		
5.	Computer Science (Online Mode)	12.	Medical Information Management		
6.	Data Science	13.	Environmental Science		
7.	Information Technology (Entire)	14.	Physics		

This syllabus, nature of question and equivalence shall be implemented from the academic year 2023-2024 onwards. A soft copy containing the syllabus is attached herewith and it is also available on university website <u>www.unishivaji.ac.in</u>)

The question papers on the pre-revised syllabi of above-mentioned course will be set for the examinations to be held in October /November 2023 & March/April 2024. These chances are available for repeater students, if any.

You are, therefore, requested to bring this to the notice of all students and teachers concerned.

Thanking you,

Dy Registrar Dr. S. M. Kubal

/

Copy to:

Cop			
1	The Dean, Faculty of Science & Technology		P.G. Admission/Seminar Section
2	Director, Board of Examinations and Evaluation	9	Computer Centre/ Eligibility Section
3	The Chairman, Respective Board of Studies	10	Affiliation Section (U.G.) (P.G.)
4	B.Sc. Exam/ Appointment Section	11	Centre for Distance Education

Date: 10/07/2023

NAAC(2021) With CGPA 3.52

Choice Based Credit System with Multiple Entry and Multiple Exit Option (NEP-2020) M.Sc. Programme Structure M.Sc. Part – II (Level-9) M.Sc. Microbiology (Horizontal Mobility) CBCS Pattern

			SEMES	TER-III (Du	ration- S	Six month)					
	Sr.	Course code	Teaching Scheme Examination Scheme								
	No.		Theor	ry and Practic	al	Universit	y Assessmen	t (UA)	Interna	ernal Assessment (IA)	
			Lectures	Hours	Credit	Maximum	Minimum	Exam.	Maximum	Minimum	Exam.
			(per week)	(per week)		Marks	Marks	Hours	Marks	Marks	Hours
CGPA	1	CC-301: Genetic Engineering	4	4	4	80\$	32	3	20	8	1
	2	CCS-302: Microbial Diversity and Extremophiles	4	4	4	80\$	32	3	20	8	1
	3	CCS-303: Fermentation Technology-I	4	4	4	80\$	32	3	20	8	1
	4	DSE-304: Immunology	4	4	4	80\$	32	3	20	8	1
	5	CCPR-305: Laboratory Course	16	16	8	200*	80	-	-	-	#
Total (C)			-	-	24	520	-	-	80	-	-
	1	AEC-306	2	2	2	-	-	-	50	20	2
Non-CGPA	2	EC (SWMMOOC)-307 Food Microbiology and Food Safety	Number of le	ectures and cree	dit shall be	e as specified o	n SWAYAM I	MOOC			
		· · · ·	SEMES	TER-IV (Du	ration- S	Six month)					
CGPA	1	CC-401: Food and Dairy Microbiology	4	4 4	4	80\$	32	3	20	8	1
	2	CCS-402: Microbial Fermentation Technology	4	4 4	1	80\$	32	3	20	8	1
	3	CCS-403: Bioinformatics	4	4 4	4	80\$	32	3	20	8	1
	4	DSE-404: Medical Microbiology	4	4 4	4	80\$	32	3	20	8	1
	5	CCPR-405:Laboratory Course and Project	1 16	16 8	3	200*	80	-	-	-	#
Total (D)	•		-	- 2	24	520	-	-	80	-	-
Non-CGPA	1	SEC-406	2	2 2	2	-	-	-	50	20	2
	2	GE-407: Basics of Microbiology	2	2 2	2	-	-	-	50	20	2
Total (C + D))		-	- 4	48	1040	-	-	160	-	-

1. *Practical Examination will be internal/external as per department choice

2. \$ Question no. 1 of each question paper will be subjective (short answer question instead of objective)

3. # Duration of Practical Examination will be 5 days (1 inspection day and 4 Practical days)

• Student contact hours per week : 32 Hours (Min.)	• Total Marks for M.ScII : 1200			
• Theory and Practical Lectures : 60 Minutes Each	• Total Credits for M.ScII (Semester III & IV) : 48			
 CC-Core Course CCS- Core Course Specialization CCPR-Core Course Practical and Project DSE-Discipline Specific Elective AEC-Mandatory Non-CGPA compulsory Ability Enhancement Course SEC- Mandatory Non-CGPA compulsory Skill Enhancement Course EC (SWM MOOC) - Non-CGPA Elective Course GE- Multidisciplinary Generic Elective 	 Practical Examination is annual. Examination for CCPR-305 shall be based on Semester III Practical's. Examination for CCPR-405 shall be based on Semester IV Practical's. *Duration of Practical Examination as per respective BOS guidelines Separate passing is mandatory for Theory, Internal and Practical Examination 			
 Requirement for Entry at Level 9: Completed all requirements of the relevant Post Graduate Diploma (Level 8) in Diploma in Microbiology (HM) 				

• Exit at Level 9: Students will exit after Level 9 with Master's Degree in Microbiology (HM) if he/she completes the courses equivalent to minimum of 96 credits.

	M.ScI	M.ScII	Total
Marks	1200	1200	2400
Credits	48	48	96

I. CGPA course:

- 1. There shall be 10 Core Courses (CC)per programme.
- 2. There shall be 04 Core Course Practical's (CCPR) per programme.
- 3. There shall be 04 Core Course Specialization (CCS) of 16 credits per programme.
- 4. There shall be 02 Discipline Specific Elective (DSE) courses of 08 credits per programme
- 5. Total credits for CGPA courses shall be of 96 credits per programme

II. Mandatory Non-CGPA Courses:

- 1. There shall be 02 Mandatory Non-CGPA compulsory Ability Enhancement Courses (AEC I and II) of 02 credits each per programme.
- 2. There shall be 02 Mandatory Non-CGPA compulsory Skill Enhancement Course (SEC I and II) of 02 credits per program.
- 3. There shall be one Elective Course (EC) (SWAYAM MOOC). The credits of this course shall be as specified on SWAYAM MOOC.
- 4. There shall be one Generic Elective (GE) course of 02 credits per programme. Each student has to take generic elective from the department other than parent department.
- 5. The total credits for Non-CGPA course shall be of 08 credits + 2-4 credits of EC as per availability.
- 6. The credits assigned to the course and the programme are to be earned by the students and shall not have any relevance with the work load of the teacher.

Shivaji University, Kolhapur

Accredited By NAAC with 'A++' grade with CGPA 3.52

Syllabus for

Master of Science (M.Sc.)

In

Microbiology (NEP-2020) (HM)

(Under Faculty of Science and Technology)

Part II

(Subject to modifications to be made time to time)

Syllabus to be implemented from 2023-2024

M.Sc. Microbiology (NEP-2020) (HM)

Part – II Syllabus

SEMESTER III			
CC-301	: Genetic Engineering		
CCS-302	: Microbial Diversity and Extremophiles		
CCS-303	: Fermentation Technology-I		
DSE-304	: Immunology		
CCPR-305	: Laboratory Course		
AEC-306	: Mandatory Non-CGPA compulsory: Ability Enhancement Course		
EC-307 (SWMMOOC)	: Non-CGPA Elective Course: Food Microbiology and Food Safety		
	SEMESTER IV		
CC-401	: Food and Dairy Microbiology		
CCS-402	: Microbial Fermentation Technology		
CCS-403	: Bioinformatics		
DSE-404	: Medical Microbiology		
CCPR-405	: Laboratory Course and Dissertation (Project)		
SEC-406	: Mandatory Non-CGPA compulsory Skill Enhancement Course		
GE-407	: Generic Elective: Basics of Microbiology		

SEMESTER III

	CC-301: Genetic Engineering	60 Hrs
Credit I	Basics Of Recombinant DNA TechnologyRestriction analysis: Types of restriction enzyme, Type I, II and III, restriction modification systems, type II restriction endonucleases and properties, isoschizomers and neoschizomers, mcr/mrr genotypes, Cohesive and blunt end ligation, linkers, adaptors, homopolymeric tailing.Labeling of DNA:Nick translation, random priming, radioactive and non-radioactive probes, use of Klenow enzyme, T4 DNA polymerase, bacterial alkaline phosphatase, polynucleotide kinase. Hybridization techniques: Northern, Southern, Western and Colony hybridization, Fluorescence in situ hybridization, Restriction maps and mapping techniques, DNA fingerprinting, chromosome walking & chromosome jumping.DNA-Protein Interactions: Electro mobility shift assay, DNase I footprinting, methyl interference assay.	15 Hrs
Credit II	Cloning Vectors Gene Cloning Vectors: Plasmids (Natural and synthetic), bacteriophages, M13, MP vectors, phagemids, Lambda vectors; insertion and replacement vectors, EMBL, λ DASH, λ gt10/11, λ ZAP etc. Cosmid vectors. Artificial chromosome vectors (YACs, BACs), Animal Virus derived vectors- SV-40, vaccinia/bacculo& retroviral vectors. Expression vectors; pMal, GST, pET-based vectors Baculovirus and <i>Pichia</i> vectors system. Applications: His-tag, GST-tag, MBP-tag etc. Restriction proteases, intein-based vectors. Inclusion bodies, methodologies to reduce formation of inclusion bodies.	15 Hrs
Credit III	Cloning Methodologies Insertion of Foreign DNA into Host Cells: Transformation, Transduction, Conjugation, Transfection: Chemical and physical methods, liposomes, microinjection, macroinjection, electroporation, biolistics, somatic cell fusion, gene transfer by pronuclear microinjection. Plant transformation technology: Basis of tumor formation, hairy root, features of Ti and Ri plasmids, mechanism of DNA transfer, role of virulence genes, use of Ti and Ri as vectors. Cloning and expression in yeasts (Saccharomyces, Pichia etc.), animal and plants cells, methods of selection and screening, cDNA and genomic cloning, expression cloning, yeast two hybrid system, phage display. DNA Libraries: Construction of cDNA libraries in plasmids and screening methodologies, Construction of cDNA and genomic DNA libraries in lambda vector, jumping libraries. Principles in maximizing gene expression.	15 Hrs

Credit IV	PCR	15 Hrs
	Primer design, Fidelity of thermostable enzymes, DNA polymerases,	
	Types of PCR: multiplex, nested, reverse transcriptase, real time,	
	touchdown, hot start, colony, cloning of PCR products, T-vectors, proof	
	reading enzymes, PCR in gene recombination, deletion, addition,	
	overlap extension, and SOEing, site directed mutagenesis, PCR in	
	molecular diagnostics, viral and bacterial detection, PCR based	
	mutagenesis.	
	Applications	
	Sequencing methods: Enzymatic DNA sequencing, Chemical	
	sequencing of DNA, principle of automated DNA sequencing,	
	NextGene DNA sequencing Methods (SOLiD, Ilumina and pyrosequencing), RNA sequencing, Chemical Synthesis of	
	oligonucleotides.	
	Gene silencing techniques: Introduction to siRNA and siRNA	
	technology, micro RNA, construction of siRNA vectors, principle and	
	application of gene silencing. CRISPR, CRISPR/Cas9 technology.	
	Gene knockouts and Gene Therapy: Creation of knockout mice, disease	
	model, somatic and germ-line therapy in vivo and ex-vivo, suicide gene	
	therapy, gene replacement, gene targeting.	
	Other applications: Transgenics, Genome projects and their	
	implications, application in global gene expression analysis.	
	Applications of recombinant DNA technology in medicine, agriculture,	
	veterinary sciences and protein engineering.	

- 1. Sambrook J, Fritsch E. F. and Maniatis (1989) Molecular cloning, vol. I, II, III, II nd edition, Cold spring harbor laboratory press, New York.
- 2. DNA Cloning : A practical approach D.M. Glover and D.B. Hames, RL Press, Oxford, 1995
- 3. Molecular and cellular methods in Biology and Medicine, P.B. Kaufman, W. Wu , D. Kim and L.J. Cseke, CRC Press Florida 1995
- 4. Methods in Enzymology Guide to Molecular Cloning Techniques, Vol. 152 S.L. Berger and A. R. Kimmel, Academic Press Inc, San Diego, 1996
- 5. Methods in Enzymology Gene Expression Technology, Vol. 185D. V. Goedel, Academic Press Inc, San Diego, 1990
- 6. DNA Science: A First Course in Recombinant Technology, D. A. Mickloss and G. A Freyer, Cold Spring Harbor Laboratory Press, New York, 1990
- 7. Molecular Biotechnology, 2nd Ed. S. B. Primrose, Blackwell Scientific publishers, Oxford, 1994
- 8. Milestones in Biotechnology, Classic Papers on Genetic Engineering, J. A. Davis and W. S. Reznikoff, Butterworth-Heinemann Boston 1992
- 9. Route Maps in Gene Technology, M. R. Walker, and R. Rapley, Blakwell Science, Oxford, 1997
- Genetic Engineering : An Introduction to Gene Analysis and Exploitation in Eukaryotes, S. M. Kingsman, Blackwell Scientific Publications, Oxford, 1998

- 11. An Introduction to Genetic Engineering, 3rd Edition. Desmond S. T. Nicholl, Cambridge University press, 2008.
- 12. Gene Cloning and Manipulation, 2nd Ed. Cristopher Howe, Cambridge University Press, 2007.

	CCS-302: Microbial Diversity and Extremophiles	60 Hrs
Credit I	Microbial Ecology: Basic ecological principles, Ecosystems, Habitats, Ecological niches, microbial community, Population dynamics and ecosystem management, mathematical definitions and suitable examples of microbe-microbe interactions, microbe-plant interactions and microbe – animal interactions.	15 Hrs
Credit II	Microbial taxonomy: Brief study on: Algae: Classification, distribution, structure, nutrition and metabolism, reproduction, importance of Algae. Fungi; Classification, distribution, structure, nutrition and metabolism, reproduction, importance of Fungi. Protozoa ; Classification, nutrition, morphology, reproduction, of protozoa. Viruses; .General properties, classification and reproduction of viruses. Viroids and virusoids, Prions.	15 Hrs
Credit III	Study of types of Microbes with examples: Concept of autotrophy, Photosynthetic bacteria- Green sulphur bacteria, cyanobacteria classification characteristics of each class, Methanogens- class of Archeabacteria methanogens types and their classification, Methanotrophs- concept and classification, Nitrogen fixing bacteria- Concept of diazotrophy, Classification of N2 fixing bacteria as free living and symbiotic and their characteristics. Extremophiles: Concept, adaptation, habitat and significance of Acidophilic bacteria, Halophilic bacteria and Thermophilic bacteria.	15 Hrs
Credit IV	Microbial interactions with abiotic components and their applications: Other microbial interactions and its controls, with certain abiotic components of environment like wood, plastic, paints, rubber, pesticides, toxic heavy metals, etc.: Biodeteriorations, Bioremediations, Biotransformations and Biomagnifications and their significance with respect to environment and biodiversity. Role of microbes in secondary and tertiary recovery of petroleum.	15 Hrs

- 1. Extremophiles (2000) By B.N.Johari, Springer Verlag
- 2. Microbial Diversity (1999) By D. Colwd, Academic press
- 3. Microbial Ecology (1979) By J.M. Lynch and N.J.Poole, Blackwell Scientific Publications, Oxford.

4. Introduction to Modern Virology (2001) eds.: N.J.Dimmock and K.N.Leppard, Blackwell Scientific Publications, Oxford.

	CCS-303 : Fermentation Technology-I	60 Hrs
Credit I	Upstream Processing Microbial cell growth, kinetics and stoichiometry, various methods for growth measurement, strain improvement by mutation, genetic engineering, etc. Overproduction of metabolites, alternative carbon and nitrogen sources and their composition. Development of innocula for industrial fermentation, design of industrial production media. Alternate metabolic routines for utilization of carbon sources with their regulation and inter-linkage especially for glucose and hydrocarbons, preservation and maintenance of microbes.	15 Hrs
Credit II	Fermentation Design of fermenter, construction materials, various sterilization techniques for solid, liquid and gases, aeration and agitation, foam, auxillaryequipments. Control of various parameters – online and offline monitoring, rheological properties of fermenter, role of computer in fermenter operation.	15 Hrs
Credit III	Batch, fed-batch, continuous fermentation and solid state fermentation. Effluent treatment, scale up and scale down. Types of fermenters, process economics, fermentation economics.	15 Hrs
Credit IV	Downstream Processing Principle, methodology, instrumentation and applications of cell homogenization techniques liquid-liquid extraction centrifugation, filtration, , distillation, ultrafiltration, precipitation, adsorption chromatography, ion exchange chromatography, gel filtration and affinity chromatography in clarification, concentration, isolation and purification of various metabolites from fermented media	15 Hrs

- 1. Moo-Young M. ed. (1985) Comprehensive Biotechnology vol: I & II, Pergamon Press N.Y.
- 2. Ratledge C and Kristiansen B. eds. (2001) Basic Biotechnology 2nd ed. Cambridge Univ Press Cambridge.
- 3. Old R.W and Primose S.D (1995) Principles of Gene Manipulation 5th ed. Blackwell Scientific Pub. Oxford.
- 4. Bailey J.E and Ollis D.F. (1986) Biochemical Engineering Fundamentals 2nd ed. McGraw Hill Book Company, N. Delhi.
- 5. Aiba S, Humphrey A. E. and N. F. Millis (1973) Biochemical Engineering, 2nd Edition University of Tokyo Press, Tokyo, Japan.
- 6. Stanbury P.F., Whitaker A, and Hall S.J. (1997) Principles of Fermentation Technology 2 nded.Aditya Books Pvt. Ltd, N.Delhi.
- 7. Mukhopadhaya S.N. (2001) Process Biotechnology Fundamentals. Viva Books Pvt. Ltd. N.Delhi.

- 8. Rehm H.J and Reed G. (1985) Biotechnology vol. I & II. VCH, Basel.
- 9. Stainer R. Y. Ingrahm J. L., Wheelis M. L. and Painter P. R. (1987) General Microbiology 5th Edition, Macmillan Press Ltd. London.

	DSE-304 : Immunology	60 Hrs
Credit I	 Immunology – fundamentals and anatomy of immune system A) ImmCredity – Innate and acquired immunity. Components of innate and acquired immunity. B) Antigen, Haptens, adjuvants, mitogens. Antibodies – structure, functions. C) The anatomy of the immune response: - Cells and organs of immune system. Regulation of immune response – Humoral and Cell mediated response. 	15 Hrs
Credit II	 Immunity to infection A) Antigen processing and presentation, MHC, complement system, T & B cell activation. B) Bacterial, viral, protozoal and parasitic infections with reference to (Diphtheria, influenza virus, malaria and helminthes) with specific representative examples of each group. C) Vaccines – Active and passive immunization, DNA vaccines, multivalent subunit vaccines, synthetic peptide vaccines. 	15 Hrs
Credit III	 Clinical Immunology A) Hypersensitivity: - Type I, II, III, and IV reactions. Autoimmunity – organ specific and systemic autoimmune diseases. Treatment of autoimmune diseases. B) Transplantation and tumor immunology: - Graft rejection, tissue typing, immunosuppressive therapy and clinical transplantation. Tumor antigens, cancer immunotherapy. C) Immunodeficiency diseases - Phagocytic, humoral, cell mediated deficiencies and SCID. AIDS- causes, syndrome, diagnostic tools, treatment and development of vaccine 	15 Hrs
Credit IV	 Immunotechnology A) Antigen antibody interactions – Principles, types and applications of agglutination, precipitation, complement fixation, viral neutralization, immunodiffusion, immunoelectrophoresis, ELISA and RIA. B) Monoclonal antibodies – Hybridoma technology and various cellular technologies. C) Automation in immunological techniques – auto analyzers used in immunology, FACS etc. 	15 Hrs

- 1. Kuby : Immunology; RA Goldsby, Thomas J. Kindt, Barbara A. Osborne.
- 2. Immunology by Roitt I. M., Brostoff J. and Male D. Gower medical publishing London.
- 3. Fundamentals of immunology 4th ed., Paul 1999, Lippencott Raven.

	CCPR-305: Laboratory Course (120 hr	rs) 200 Marks
	1.Screening of antibiotic producers- crowded plate technique	
	2. Screening of organic acid producers & amine producers	
	3. Screening of Amylase, Protease & Lipase producers	
	4. Screening of Vitamin producers	
	5. Enrichment and isolation of pesticide resistant bacteria from	soil
	6. Isolation of thermophilic bacteria from soil	
	7. Isolation of acidophilic and alkalophilic bacteria from soil	
	8. Isolation of psychrophilic bacteria from soil	
Part A	9. Isolation of halophilic and halotolerant bacteria	
	10. Determination of effective dilution of the given disinfectant vessels	to disinfect tables &
	11. Determination of effective dilution of the given disinfectant disinfection of skin.	for effective
	12. Determination of preservative effect of the given preservative	ve
	13. Determination of potability of the given water	
	14. Estimation of heterotrophic bacterial count of the given sam	ple.
	15. Isolation of lysozyme from egg.	-

	1. Production and Estimation of citric acid by Aspergillus niger
	2. Transformation
	3. Conjugation
	4. ELISA and Widal test
	5. Western blot.
	6. Transduction
	7. Protoplast fusion
Part B	8. Gene expression
	9. Preparation of plant tissue culture, formulation of media.
	10. Isolation of cell wall and study of cell wall polysaccharide by chromatographic
	technique.
	11. Laboratory Production of Bacillus thuringinesis insecticide and testing of its
	efficiency.
	12. Production of biomass Azotobacter, Rhizobium, Azolla and preparation of
	biofertilizer from it.

	AEC-306 : Mandatory Non-CGPA compulsory Ability Enhancement Course	30 Hrs
Credit I	Syllabus and nature of paper will be opted as per committee decision.	15 Hrs
Credit II		15 Hrs

	EC (SWMMOOC) 307 : Non-CGPA Elective Course Food Microbiology and Food Safety	
Credit I	Syllabus and nature of paper will be opted as per swayam portal.	
Credit II		

SEMESTER IV

	CC-401: Food and Dairy Microbiology	60 Hrs
Credit I	Contamination, Preservation and Spoilage of different kinds of foods: Cereal products, Sugar products, Vegetables and fruits, Meat and Meat products, Fish, Eggs, Milk and Milk products, Heated canned foods and other Miscellaneous foods. Fermented Foods: Pickles, Fermented soya products, Fermented products like Idli, Dhokla etc. Fermented vegetables -sauerkraut fermentation. Fermented bakery products.	15 Hrs
Credit II	Food poisoning and infections: Staphylococal poisoning, botulinal poisoning, Salmonella, Vibrio, Bacillus cereus poisoning. Mycotoxins: Patulin, Aflatoxin, Ochratoxin, Luteoskyrin, Sterigmatocystin, ATA etc. Food borne infections: Study of food borne diseases Streptococcal infections, Tuberculosis, Shigellosis, Brucellosis, Enteropathogenic viral infections, preventive measures.	15 Hrs
Credit III	Dairy Microbiology: Cheese fermentation, Fermented Milks, Butter, and other milk products. Indicator organisms. Spoilage and defects of fermented dairy products.	15 Hrs
Credit IV	Quality control and Regulations of food industry: Microbiological quality control of milk and milk products: ISI standards, FAO/WHO regulations, FDA regulations and APHA/IDF regulations. Principles of HACCP in Food industries, Quality Manuals and documentations for different products, Basic GMP in the industry.	15 Hrs

- Food Science (1996) Fifth Edition by Norman and Potter
 Food Microbiology Frazier
- 3. Dairy Microbiology by J.S.Yadav, S. Grover, and V.K. Batish

	CCS-402: Microbial Fermentation Technology)	60 Hrs
Credit I	Fermentation media: Functions of media components, media rheology and Newton's law of viscosity, Optimization of medium. Gas diffusion: Oxygen and Mass Balance Transfer relationship, Factors affecting gas diffusion	15 Hrs

	Types of fermentations: Solid Surface culture type, Liquid surface	
	culture, submerged fermentations.	
Credit II	Cultures:	15 Hrs
	Isolation, Screening, Yield improvement by changing culture	
	techniques, Strain improvement and preservation. Growth kinetics	
	and yield kinetics.	
	Controls of fermentation: Principles of control system design, Flux	
	control analysis, Command controls, Biosensors. Fermentation control	
	options- Knowledge based system (KBS), Artificial neural networks	
	(ANN) and Genetic algorithm (GA).	
Credit III	Modeling of fermentation processes:	15 Hrs
	Techniques of mathematical modeling.	
	Process validation and quality assurance: bioprocesses,	
	Approaches and Modeling	
	a) Installation Qualification (IQ), Operational Qualification (OQ),	
	and Performance Qualification (PQ) for laboratory instruments	
	b) Methods of validation and calibration of equipments	
	c) Documentation-importance and significance	
	d) Current Good Manufacturing Practices (CGMP) and Currents	
	Good Laboratory Practices (CGLP)	
Credit IV	Typical fermentation processes:	15 Hrs
	Industrial production of	
	i) Microbial enzymes	
	ii) Bacitracin	
	iii) Streptomycin	
	vi) Riboflavin	
	v) B-Carotene	
	vi) Gibberellins	
	vii) Surfactants	

- 1. Fermentation Microbiology and Biotechnology by M. El-Mansi and C.Bryce
- 2. Principles of fermentation technology by Whitekar, Stanbury and Hall Modelling
- 3. Control of fermentation process by J.R.Leigh
- 4. Microbial Technology Vol. I and II by H.J.Peppler and D.Perlman. Academic Press INC

	CCS-403: Bioinformatics	60 Hrs
Credit I	Proteomics: Protein Sequence Databases and Analysis Protein sequence information, Primary protein sequence databases, Secondary protein sequence databases, Pair-wise sequence alignment, gaps, gap-penalties, scoring matrices, PAM250, BLOSUM62, local and global sequence alignment, multiple sequence alignment, physicochemical properties using ExPASy, Useful programme; Clustal W.	15 Hrs

	Proteomics; Strutural Databases, Protein Structure Prediction	
	Structural databases; Protein Data bank (PDB), Nucleic Acid Data	
	Bank (NDB), Molecular modeling Data Bank (MMDB). Homology	
	modeling, three-dimensional structure prediction, protein folding and	
	functional sites.	
Credit II	Genomics: Nucleotide Sequence Databases And Analysis	15 Hrs
	Human Genome project (HGP); rough and final draft of HGP, goals of	
	the HGP, genomics. Nucleotide Sequence databases: GenBank, EMBL,	
	DNA Data Bank of Japan (DDBJ). Restriction enzymes, REBASE,	
	Polymerase chain reaction, primer designing, Next Generation	
	Sequencing, application of BioEdit.	
	Genomics: Gene Identification	
	Genome information and special features, coding sequences (CDS),	
	untranslated regions (UTR's), cDNA library, expressed sequence tags	
	(EST), 16S rDNA gene sequencing. Approaches to gene identification;	
	masking repetitive DNA, database search, codon-bias detection,	
	detecting functional sites in the DNA. Internet resources for gene	
	identification. Construction of maps, genetic map, physical map,	
	BLAST.	
Credit III	Structural Biology	15 Hrs
	Ribose-ring puckering, RNA folding, Ramachandran plot, prediction of	
	α -helix, β -sheet, and 3_{10} -helix, loop modeling, 3-D structure validation,	
	molecular docking, protein-ligand interactions, biophysical aspects of	
	proteins and nucleic acids.	
	Molecular Modeling	
	Functions of molecular modeling. Molecular mechanics, force field,	
	potential energy functions, energy minimization methods, single point	
	calculations, full-geometry optimization, conformational search, ,	
	molecular dynamics simulations, molecular modeling packages.	
Credit IV	Microarrays	15 Hrs
	Concept of microarrays; spotted arrays, oligonucleotide arrays,	10 1113
	Applications of microarray technology. Tools and Techniques in	
	proteomics; Isotope Coded Affinity Tags (ICAT), Mass spectroscopy	
	for protein analysis, MALDI-TOF, Electrospray ionization (EST),	
	Tandem mass spectroscopy (MS/MS) analysis; tryptic digestion and	
	peptide fingerprinting (PMF), profiling and diagnostics, drug target discovery	
	discovery. Phylogenetic Analysis	
	Phylogenetic Analysis	
	Evolution, phylogenetic tree, methods of phylogenetic analysis;	
	distance based and character based methods, phylogenetic analysis tool-	
	Phylip.	

- 1. Introduction to Bioinformatics, (Atwood, T. K. and Parry-Smith, D. J).
- 2. An introduction to Computational Biochemistry. (C. Stain Tsai, A John Wiley and Sons, Inc., publications).
- 3. Developing Bioinformatics Computer Skills. (Cynthia Gibas and Per Jambeck).

- 4. Bioinformatics Methods and Applications Genomics, Proteomics and Drug Discovery. (Rastogi S. C. Mendiratta, and Rastogi P.)
- 5. Bioinformatics, Sequence and Genome Analysis by David Mount, Cold Spring Harbor Laboratory Press, NY, 2004.
- 6. NCBI Web site: <u>http://www.ncbi.nlm.nih.gov</u>

	DSE-404: Medical Microbiology	60 Hrs
Credit I	Virulence: Invasion of pathogens through the different immunological barriers of human body. Establishment of infection. Role of portal of entry of the pathogen. Antigenic variations and virulence. Microbial toxins and super antigens. Carriers of infections. Epidemiology of certain diseases like urino-genital infections, upper respiratory tract infections, dermatological infections and gastero intestinal tract infections. Loss of virulence by many pathogens on subculturing on artificial media.	15 Hrs
Credit II	Epidemiology: Spread of certain infections in a population. Concept of epidemic, endemic and pandemic spread. Role of socioeconomic conditions in spread of disease. Epidemiological methods- descriptive, analytical and experimental epidemiology. Measurement of infection rate.	15 Hrs
Credit III		15 Hrs
Credit IV	Clinical Microbiology: Collection and transportation of pathological samples with specialreference to samples like Cerebro Spinal Fluid (CSF), Sputum samples, Urine samples and swabs. Certain cultural techniques for pathogens like Dermatophytes, Salmonella, Meningococcus, Leptospira, Mycobacterium, Vibrio, Plasmodium spp, Wucheria bancriofti, and Ascaris lumbricoides. Rapid methods of identification of infection like ELISA, FAT, RIA and Western Blot techniques.	15 Hrs

- 1. Introduction to Microbiology by Prescott, Harley, Klein
- 2. Medical Microbiology by Ananthanaryan
- 3. Medical Microbiology by Dey and Dey

	CCPR- 405: Laboratory Course and Project (120 Hrs) (200 Marks)
Part A	 Fermentative production of gluconic acid. Bioassay of streptomycin. Fermentative production of wine. Detection of adulteration in common food. Detection of afla toxin in food and feed. Chemical analysis of food – pH, benzoate, sorbate and colour. Microbiological –MPN, Resazurin. Chemical – pH, fat, protein, sugar and ash, Physical – sp. gravity, different solid, test for grading of milk. Platform test in dairy industry – COB, alcohol precipitation, titrable acidity test, quantitative phosphatase test. Using RasMol through command line. Pair-wise sequence alignment. Introduction of BioEdit. Construction of three-dimensional model by using SPARTAN Model Building and Energy minimization. Molecular Docking and Drug designing. Production of amylase
Part B	Research Project (100 Marks)

	SEC-406: Mandatory Non-CGPA compulsory Skill Enhancement Course	30 Hrs
Credit I	Syllabus and nature of paper will be opted as per committee decision.	15 Hrs
Credit II		15 Hrs

GE-407: Mandatory Non-CGPA Generic Elective Course

Sr. No.	Generic Elective Title of the paper	Credits assigned to the paper	Semester for which course is offered	Eligibility
1.	Basics of Microbiology	2	IV	Masters in any stream

	GE-407: Basics of Microbiology	30 Hrs
Credit I	Introduction to Microbiology:Origins of Microorganisms, differences between eukaryotic and prokaryotic cells,Types of microorganisms, Beneficial and harmful activities of microorganisms.Bacterial cell structure and its physiology.Microbial growth: growth curves, Bacterial nutrition, Culture media	
Credit II	Techniques in Microbiology:Pure culture techniques: streak plate, pour plate, spread plate,Microscopy.Isolation of aerobic and anaerobic bacteria,Control of microorganisms: different methods such as physical andchemical, disinfection, antimicrobial test.Stains and staining techniques: definition and types of stains,monochrome and Gram staining	15

- Introduction to Microbiology by Prescott, Harley and Kein
 Microbiology by Pelczar